近年来涌现出不少DNA甲基化的检测技术,少说也有十几种。大致可以分为两类:特异位点的甲基化检测和全基因组的甲基化分析,后者也称为甲基化图谱分析(methylation profiling)。下面大家介绍一些常用的方法。
1. 甲基化特异性PCR(MS-PCR)
这种方法经济实用,无需特殊仪器,因此是目前应用最为广泛的方法。在亚硫酸氢盐处理后,即可开展MS-PCR。在传统的MSP方法中,通常设计两对引物,一对MSP引物扩增经亚硫酸氢盐处理后的DNA模板,而另一对扩增未甲基化片段。若第一对引物能扩增出片段,则说明该检测位点存在甲基化,若第二对引物能扩增出片段,则说明该检测位点不存在甲基化。
这种方法灵敏度高,可用于石蜡包埋样本,且不受内切酶的限制。不过也存在一定的缺陷,你要预先知道待测片段的DNA序列,并设计出好的引物,这至关重要。另外,若存在亚硫酸氢盐处理不完全的情况,那可能导致假阳性。
2. 亚硫酸氢盐处理+测序
这种方法一度被认为是DNA甲基化分析的金标准。它的过程如下:经过亚硫酸氢盐处理后,用PCR扩增目的片段,并对PCR产物进行测序,将序列与未经处理的序列进行比较,判断CpG位点是否发生甲基化。这种方法可靠,且精确度高,能明确目的片段中每一个CpG位点的甲基化状态,但需要大量的克隆测序,过程较为繁琐、昂贵。
3. 联合亚硫酸氢钠的限制性内切酶分析法(COBRA)
DNA样本经亚硫酸氢盐处理后,利用PCR扩增。扩增产物纯化后用限制性内切酶(BstUI)消化。若其识别序列中的C发生完全甲基化(5mCG5mCG),则PCR扩增后保留为CGCG,BstU I能够识别并进行切割;若待测序列中,C未发生甲基化,则PCR后转变为TGTG,BstUI识别位点丢失,不能进行切割。这样酶切产物再经电泳分离、探针杂交、扫描定量后即可得出原样本中甲基化的比例。
这种方法相对简单,可快速定量几个已知CpG位点的甲基化,且需要的样本量少。然而,它只能获得特殊酶切位点的甲基化情况,因此检测阴性不能排除样品DNA中存在甲基化的可能。
4. 荧光定量法(Methylight)
此种方法利用TaqMan® 探针和PCR引物来区分甲基化和未甲基化的DNA。首先用亚硫酸氢盐处理DNA片段,并设计一个能与待测位点互补的探针,随后开展实时定量PCR。这种方法最大的优势在于其高通量和高敏感性,且无需在PCR后电泳、杂交等操作,减少了污染和操作误差。
图片
5. 甲基化敏感性高分辨率熔解曲线分析
亚硫酸氢盐处理后,甲基化与未甲基化DNA会存在序列差异,这种差异可通过熔解曲线分析来发现,因为甲基化DNA含有更多的GC,相对更难熔解。根据熔解温度及峰型的变化,可轻易区分完全甲基化、完全非甲基化或杂合甲基化。高分辨率熔解(HRM)技术可检出极微小的差别。
使用这种方法进行甲基化分析仅需一对引物,相比以往的方法更加快捷、简便和精确。不过对仪器的要求颇高,需要带HRM模块的荧光定量PCR仪。
6. 焦磷酸测序
焦磷酸测序技术(Pyrosequencing)作为一种新的序列分析技术,能够快速地检测甲基化的频率,对样品中的甲基化位点进行定性及定量检测,为甲基化研究提供了新的途径。
通过准确定量单个连续的CpG 位点上的甲基化频率,焦磷酸测序本身能检测并定量甲基化水平上的细微改变。在序列延伸过程中,根据C和T的掺入量来定量确定单个位点的C-T 比例。因此,不同位点的甲基化变异就能被准确检测。由于焦磷酸测序提供了真实的序列数据,甲基化状态也就以序列形式呈现。
7. 基于芯片的甲基化图谱分析
就甲基化图谱分析而言,目前流行的分析方法是芯片。多个公司都提供了这种工具,平台不同,过程也各异。安捷伦和NimbleGen的分析过程中,基因组DNA分成两份,一份用来做MeDIP,另一份作为对照。两个样品都标记荧光(富集的样品用Cy5标记,对照用Cy3标记),然后与芯片杂交。芯片上每个探针的Cy5/Cy3强度比例显示出该区域的甲基化程度。
8. 高通量测序
新一代测序仪的飞速发展,使得测序成本大幅度下降,也使得甲基化组(methylome)的研究成为可能。近两年,多个研究小组将传统的甲基化工具(如DNA的亚硫酸氢盐转化)与目标基因组捕获技术和高通量测序相结合,绘制出了多张甲基化图谱。
而第三代测序技术的出现,更是让甲基化的直接测定成为可能。
SMRT技术采用的是对DNA聚合酶的工作状态进行实时监测的方法。DNA聚合酶催化荧光标记的核苷酸掺入到互补的核酸链中。核苷酸的掺入被检测成荧光脉冲,依据其颜色鉴定出核苷酸。当聚合酶切断连接在核苷酸末端的荧光基团时,脉冲终止。荧光脉冲的到达时间和持续时间产生了关于聚合酶动力学的信息,从而允许直接检测DNA模板链中的修饰核苷酸,包括N6-甲基腺嘌呤、5-甲基胞嘧啶和5-羟甲基胞嘧啶。
研究人员使用这些动力学特征,鉴定出基因组样品中的腺嘌呤甲基化,并发现再结合circular consensus sequencing,他们能够在单碱基分辨率上鉴定出表观遗传学修饰(mA、mC和hmC)。
9. 飞行质谱
美国Sequenom公司的MassARRAY® 平台也可用于DNA甲基化分析。MassARRAY® EpiTYPER™ DNA 甲基化分析技术结合了碱基特异性酶切反应和 MALDI-TOF 检测原理,可实现多重CpG的分析检测。
碱基特异性酶切(MassCLEAVE)实验由亚硫酸氢盐处理待测 DNA 开始。经过亚硫酸氢盐处理,DNA中未甲基化的胞嘧啶 (C) 转变为尿嘧啶(U),由此在DNA模板中产生甲基化特异的序列变化。利用 5’39; 末端带有T7-启动子的引物进行 PCR 扩增,产物经 SAP (虾碱性磷酸酶)处理后用于碱基特异性的酶切反应。酶切后DNA片段的大小和分子量取决于亚硫酸盐处理后的碱基变化,飞行质谱能测出每个片段的分子量,配套软件 EpiTYPER 则能自动报告每个相应片段的甲基化程度。
MassARRAY甲基化检测无需任何荧光标记,每个反应覆盖长达500 bp的多个CpG位点,且灵敏度高,可检测低至5%的甲基化水平。